淘寶官方店     推薦課程     易迪拓培訓(xùn)     在線工具     聯(lián)系方式     關(guān)于我們  
 
 

推薦課程   ADS2011   |   HFSS   |   CST   |   Ansoft Designer   |   MWO2006   |   Ansoft全集  

 

臺灣射頻專業(yè)課程   |   微波測量操作培訓(xùn)   |   天線設(shè)計   |   Cadence Allegro   |   PADS2007 

專業(yè)、專注,成就你我! E-mail:mweda@163.com, QQ:625774272
 

 

   

EE101: Circuits and Electronics
               MIT電子電路視頻課程
(25課時  ¥45)
Instructor: Prof. Anant Agarwal

        Circuits and Electronics是MIT 電子工程專業(yè)本科生必修課程,講授集總模擬電路分析基礎(chǔ)知識和理論;共25講,每講50分鐘左右。該門課程包括:.rm格式的課程視頻和與視頻課程內(nèi)容配套使用的完整的課程講義。有了課程講義讓您的學(xué)習(xí)更有效,在潛移默化中提高專業(yè)知識和英語能力。
        麻省理工大學(xué)(M I T)作為世界一流大學(xué),有著世界頂級的大師,所設(shè)課程也都是精品中的精品,緊跟最新科技的進展。本站推出的美國一流大學(xué)精品視頻課程套裝,讓您足不出戶就能一睹世界一流大學(xué)大師教學(xué)的風(fēng)采;聆聽大師的聲音、拓展國際化的視野、與國際水平看齊、實現(xiàn)自我價值的提升。

 

 

Course Description:

        This course is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, this course is in the core of department subjects required for all undergraduates in EE and EECS.
        This course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course.
 

Textbooks:

        Agarwal, Anant and Jeffrey H. Lang. Foundations of Analog and Digital Electronic Circuits. Morgan Kaufmann Publishers, Elsevier, July 2005.
 

Course Objectives:

        The subject aims to provide the student with:
        An understanding of basic EE abstractions on which analysis and design of electrical and electronic circuits and systems are based, including lumped circuit, digital and operational amplifier abstractions.
        The capability to use abstractions to analyze and design simple electronic circuits.
        The ability to formulate and solve the differential equations describing time behavior of circuits containing energy storage elements.
        An understanding of how complex devices such as semiconductor diodes and field-effect transistors are modeled and how the models are used in the design and analysis of useful circuits.
        The capability to design and construct circuits, take measurements of circuit behavior and performance, compare with predicted circuit models and explain discrepancies.
 

What will you learn:

You will:
      Learn how to develop and employ circuit models for elementary electronic components, e.g., resistors, sources, inductors, capacitors, diodes and transistors;
      Become adept at using various methods of circuit analysis, including simplified methods such as series-parallel reductions, voltage and current dividers, and the node method;
       Appreciate the consequences of linearity, in particular the principle of superposition and Thevenin-Norton equivalent circuits;
       Gain an intuitive understanding of the role of power flow and energy storage in electronic circuits;
       Develop the capability to analyze and design simple circuits containing non-linear elements such as transistors using the concepts of load lines, operating points and incremental analysis;
       Learn how the primitives of Boolean algebra are used to describe the processing of binary signals and to use electronic components such as MOSFET's as building blocks in electronically implementing binary functions;
       Learn how the concept of noise margin is used to provide noise immunity in digital circuits;
       Be introduced to the concept of state in a dynamical physical system and learn how to analyze simple first and second order linear circuits containing memory elements;
       Be introduced to the concept of singularity functions and learn how to analyze simple circuits containing step and impulse sources;
      Be introduced to the concept of sinusoidal-steady-state (SSS) and to use impedance methods to analyze the SSS response of first and second-order systems;
       Learn how to calculate frequency response curves and to interpret the salient features in terms of poles and zeros of the system function;
       Gain insight into the behavior of a physical system driven near resonance, in particular the relationship to the transient response and the significance of the quality factor Q;
       Learn how operational amplifiers are modeled and analyzed, and to design Op-Amp circuits to perform operations such as integration, differentiation and filtering on electronic signals;
       Be introduced to the concepts of both positive and negative feedback in electronic circuits;
       Learn how negative feedback is used to stabilize the gain of an Op-Amp-based amplifier and how positive feedback can be used to design an oscillator;
       Acquire experience in building and trouble-shooting simple electronic analog and digital circuits.
 

 【購買聯(lián)系
全美一流大學(xué)視頻課程套裝
 【更多高校視頻課程...

 

Copyright © 2006 - 2013   微波EDA網(wǎng), All Rights Reserved    業(yè)務(wù)聯(lián)系:mweda@163.com      滬ICP備05048810號